Weak discrete maximum principle of finite element methods in convex polyhedra

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Finite Element Method on Convex Polyhedra

We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on tetrahedr...

متن کامل

A Weak Discrete Maximum Principle and Stability

Let ÍÍ be a polygonal domain in the plane and Sy(£l) denote the finite element space of continuous piecewise polynomials of degree < r — 1 (r > 2) defined on a quasi-uniform triangulation of ii (with triangles roughly of size h). It is shown that if un e Sy(Sl) is a "discrete harmonic function" then an a priori estimate (a weak maximum principle) of the form ""ftHi^n) < CII"/illL„.(3iï) holds. ...

متن کامل

Enforcing the Discrete Maximum Principle for Linear Finite Element Solutions of Second-Order Elliptic Problems

The maximum principle is a basic qualitative property of the solution of second-order elliptic boundary value problems. The preservation of the qualitative characteristics, such as the maximum principle, in discrete model is one of the key requirements. It is well known that standard linear finite element solution does not satisfy maximum principle on general triangular meshes in 2D. In this pa...

متن کامل

Failure of the discrete maximum principle for an elliptic finite element problem

There has been a long-standing question of whether certain mesh restrictions are required for a maximum condition to hold for the discrete equations arising from a finite element approximation of an elliptic problem. This is related to knowing whether the discrete Green’s function is positive for triangular meshes allowing sufficiently good approximation of H1 functions. We study this question ...

متن کامل

Enforcing the Discrete Maximum Principle for Linear Finite Element Solutions of Elliptic Problems LAUR-07-3949

The maximum principle is basic qualitative property of the solution of elliptic boundary value problems. The preservation of the qualitative characteristics, such as maximum principle, in discrete model is one of the key requirements. It is well known that standard linear finite element solution does not satisfy maximum principle on general triangular meshes in 2D. In this paper we consider how...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2020

ISSN: 0025-5718,1088-6842

DOI: 10.1090/mcom/3560